Non-bipartite Matching

E.de Klerk
Delft University of Technology

Week 4: Slides about Chapter 5 of the Lecture notes.
Matchings and odd components

Let $G = (V, E)$ be given.

Definition: A matching is a subset $M \subseteq E$ such that $e \cap e' = \emptyset$ for all $e, e' \in M, e \neq e'$.

A matching is called *perfect* if it covers all vertices (size $= \frac{1}{2}|V|$).

Definition: For any subset $U \subseteq V$ we denote the set of edges with both end nodes in U as E_U (or EU). The graph (U, E_U) is denoted as G_U. The number of odd components in G_U is denoted as $o(U)$. The complement of U in V is denoted as \bar{U}. The graph obtained by removing the nodes in U and all edges connected to it, is denoted as $G - U$.
Weak duality for matchings

If M is a matching and $U \subseteq V$ then one has

$$2|V| - |U| - o(U) \geq 2|M|$$

Proof: Let $U_i \ (1 \leq i \leq k)$ be the connected components of $G_U = (U, E_U)$. Then the number of edges of M

in G_U, is $\leq \frac{1}{2}|U_i|$ if $|U_i|$ is even

$\leq \frac{1}{2}(|U_i| - 1)$ if $|U_i|$ is odd

not in G_U is $\leq |\bar{U}| = |V| - |U|$

Taking the sum we obtain

$$|M| \leq |V| - |U| + \frac{1}{2}(|U| - o(U)) = |V| - \frac{1}{2}(|U| + o(U)).$$

It follows from the above proof that equality holds if and only the edges in M form perfect matchings for the even components of G_U and 'almost perfect matchings' for the odd components; apart from these edges there are precisely $|\bar{U}|$ edges that connect every node outside U with an odd component of G_U.
Graphical illustration

$|U_i|$ is even

$|U_i|$ is odd

\bar{U}
Tutte's 1-factor theorem

Theorem G has a perfect matching if and only if

$$|U| + o(U) \leq |V|$$

for each $U \subseteq V$.

Proof:

'⇒': Assume G has a perfect matching M ($|M| = \frac{1}{2}|V|$). Then

$$2|V| - |U| - o(U) \geq 2|M| = |V|$$

for any $U \subset V$, which implies the desired inequality.

'⇐': Much harder: see course syllabus Thm. 5.1.
Tutte’s theorem and a corollary

Theorem Let $\nu(G)$ denote the matching number. We have:

$$\nu(G) = \min_{U \subseteq V} \left(|V| - \frac{|U| + o(U)}{2} \right)$$

$$= |V| - \max_{U \subseteq V} \frac{|U| + o(U)}{2}$$

Corollary
Assume G has no isolated vertices. Denote by $\rho(G)$ the edge cover number of G. One has:

$$\rho(G) = \max_{U \subseteq V} \frac{|U| + o(U)}{2}.$$

Proof: Use $\rho(G) = |V| - \nu(G)$ (Gallai’s theorem: $\rho(G) + \nu(G) = |V|$).
Finding a certificate U

For any $G = (V, E)$ let the subsets D, A and C of V be defined by

\[D = \{ v \in V : v \text{ is missed by a maximal matching} \} \]
\[A = \{ v \notin D : v \text{ is neighbor of some } u \in D \} \]
\[C = V \setminus (D \cup A) \]

Then the set $U = V \setminus A = C \cup D$ maximizes $|U| + o(U)$.

Example:

Matching M (red) and sets D (green) and C (yellow)

\[D = \{2, 4, 5, 8, 10, 12, 13\}, \quad A = \{3, 11\}, \quad C = \{1, 6, 7, 9\} \]
\[|U| = 11, \ o(U) = 3 \quad \Rightarrow \quad |M| \leq 13 - \frac{1}{2}(11 + 3) = 6. \]
Weak duality for edge covers

Assume $G = (V, E)$ has no isolated vertices. If F is an edge cover and $U \subseteq V$ then one has

$$|U| + o(U) \leq 2|F|$$

Proof: Let U_i ($1 \leq i \leq k$) be the connected components of $G_U = (U, E_U)$. Then the number of edges in F needed to cover the nodes of the i-th component is

$$\geq \frac{1}{2}|U_i| \quad \text{if } |U_i| \text{ is even}$$

$$\geq \frac{1}{2}(|U_i| + 1) \quad \text{if } |U_i| \text{ is odd}.$$

Taking the sum over all i we obtain

$$|F| \geq \frac{1}{2} \left(\sum_{i=1}^{k} |U_i| + \# \text{ of odd components} \right).$$

It follows from the above proof that equality holds if and only the edges in F fall apart in perfect matchings for the even components of G_U and 'almost perfect matchings' for the odd components; each odd component has exactly one node that is covered by an edge of F whose other end node is in the complement of U.
Example

\[G = (V, E) \]

Edge cover \(F \) (red arcs) and set \(U \) (green nodes)

\[|F| = 5, \quad |U| = 6, \quad o(U) = 4. \]
Example

$G = (V, E)$

Edge cover F (red arcs) and set U (green nodes)

$|F| = 13, \quad |U| = 22, \quad o(U) = 4.$
Proof of Tutte's theorem for edge covers

To include the case where $G = (V, E)$ has isolated vertices, we let $\rho(G)$ denote the minimal number of nodes and edges needed to cover all nodes. Then we have

$$\rho(G) = \max_{U \subseteq V} \frac{|U| + o(U)}{2}$$

Proof: First we show the \geq part. For any $U \subseteq V$ we have

$$\rho(G) \geq \rho(U) \geq \frac{1}{2} (|U| + o(U)).$$

For the inverse inequality we use induction on $|V|$. The case $|V| = 0$ is trivial. We proceed by considering a graph $G = (V, E)$ with $|V| > 0$, while assuming that the statement holds for all graphs with fewer than $|V|$ nodes. Without loss of generality we assume that G is connected (verify!). This implies $o(V) = 0$ if $|V|$ is even and $o(V) = 1$ if $|V|$ is odd. We also assume that if a vertex can be covered by itself (without increasing the size of the node-edge cover) than we do so. So we minimize the number of edges in any node-edge cover.

First assume that G has a vertex v that is covered by an edge in each minimal node-edge cover. Then $\rho(G - v) = \rho(G)$, and by induction there exists a subset U' of $V \setminus \{v\}$ such that

$$\rho(G - v) = \frac{|U'| + o(U')}{2}.$$

Taking $U = U'$ we obtain

$$\rho(G) = \rho(G - v) = \frac{1}{2} (|U'| + o(U')) = \frac{1}{2} (|U| + o(U)).$$
Proof of Tutte's theorem for edge covers (cont.)

\[\rho(G) = \max_{U \subseteq V} \frac{|U| + o(U)}{2} \]

Now assume that for each vertex \(v \) there exists a minimal node-edge cover that covers \(v \) by a node. We show that a minimal node-edge cover then contains precisely one node.

Suppose on the contrary that a minimal node-edge cover \(F \) contains two nodes, \(u \) and \(v \) say. Choose \(F, u \) and \(v \) such that \(d(u, v) \) is minimal.

If \(d(u, v) = 1 \), then we can add the edge \(uv \) to \(F \), decreasing the size of \(F \) with 1, and hence contradicting that \(F \) is minimal. So \(d(u, v) \geq 2 \).

Let \(t \in V \) be an intermediate node on a shortest \(u-v \) path. By assumption, there exists a minimal node-edge cover \(H \) containing \(\{t\} \). Choose \(H \) such that the number of edges in \(F \cap H \) is maximal.

By the choice of \(F, u \) and \(v \), \(d(u, v) \) is minimal. Since \(d(u, t) < d(u, v) \) and \(d(t, v) < d(u, v) \), \(H \) covers both \(u \) and \(v \) by an edge. Since \(F \) and \(H \) contain the same number of nodes (and edges), there exists a node \(x \neq t \) that \(F \) covers by some edge \(e = xy \) and \(H \) by \(\{x\} \). Then \(y \) is covered by some edge \(f = yz \in H \), since otherwise \(H \) would contain \(\{x\} \) and \(\{y\} \), and we could replace these by the edge \(xy \), yielding a node-edge cover smaller than \(H \). Replacing \(H \) by \((H \setminus (\{x\} \cup \{f\})) \cup (\{e\} \cup \{z\}) \) increases the number of edges in \(F \cap H \), yielding a contradiction with the choice of \(H \).

Hence we have shown that a minimal node-edge cover \(F \) contains at most 1 vertex, whence \(|V| = 2|F| \) or \(|V| = 2|F| - 1 \). In both case \(U := V \) yields the desired equality.
Finding a certificate U

For any $G = (V, E)$ let the subsets D and C of V be defined by

$$
D = \{ v \in V : \{v\} \text{ occurs in some minimal node-edge cover} \} \\
C = \{ v \notin D : v \text{ is has no neighbor } u \in D \}
$$

Then the set $U = C \cup D$ maximizes $|U| + o(U)$.

Proof: We use induction to $|V|$. If $|V| \leq 2$ the statement is obvious. We proceed by considering a graph $G = (V, E)$ with $|V| > 0$, while assuming that the statement holds for all graphs with fewer than $|V|$ nodes. Without loss of generality we assume that G is connected (verify!). This implies $o(V) = 0$ if $|V|$ is even and $o(V) = 1$ if $|V|$ is odd. We also assume that if a vertex can be covered by itself (without increasing the size of the node-edge cover) than we do so. In other words, we assume that in any node-edge cover the number of edges is minimized.

It suffices to show that there is a minimal node-edge cover F of G such that for the given set U one has

$$
|U| + o(U) = 2|F|.
$$

We consider two cases: $A \neq \emptyset$ and $A = \emptyset$.

Finding a certificate U: $A \neq \emptyset$

For any $G = (V, E)$ let the subsets D, A and C of V be defined by

$$
D = \{ v \in V : \{v\} \text{ occurs in some minimal node-edge cover} \}
$$

$$
C = \{ v \notin D : v \text{ is has no neighbor } u \in D \}
$$

Then the set $U = C \cup D$ maximizes $|U| + o(U)$.

First consider $A \neq \emptyset$. Let $x \in A$. Then $xz \in E$ for some $z \in D$. Since $z \in D$, there is a minimal node-edge cover F such that $\{z\} \in F$. Since $x \notin D$, $xy \in F$ for some y. This implies $y \neq z$. On the other hand, replacing in F edge xy by xz and node z by y we get another minimal node-edge cover that contains y as a node. Therefore, $y \in D$.

Finding a certificate U: $A = \emptyset$

For any $G = (V, E)$ let the subsets D, A and C of V be defined by

$$D = \{ v \in V : \{v\} \text{ occurs in some minimal node-edge cover} \}$$

$$C = \{ v \notin D : v \text{ is has no neighbor } u \in D \}$$

Then the set $U = C \cup D$ maximizes $|U| + o(U)$.
Finding maximal matchings

We saw in week 2 how to find maximal matchings in bipartite graphs.

Given a matching M, we used an M-augmenting path P to obtain a larger matching

$$M' = M \Delta EP.$$

We want to use the same technique for general G, but must take care of odd cycles. (Bipartite graphs do not contain odd cycles (why?))

Idea: We will shrink some odd cycles, so-called blossoms, to a single vertex.
Shrinking a graph

Let X, Y be sets. Define:

$$X/Y := \begin{cases} X & \text{if } X \cap Y = \emptyset \\ (X \setminus Y) \cup \{Y\} & \text{if } X \cap Y \neq \emptyset. \end{cases}$$

For $G = (V, E)$ and $C \subset V$ then V/C replaces C by a single vertex called C (shrinks C to a vertex).

An edge in C becomes a loop, and an edge (u, v) from $V \setminus C$ to C becomes an edge (u, C).

Loops can be removed — they play no role in matchings.
Augmenting paths and matchings

Recall the results of week 2:

Let M be a matching in G.

Definition: A *path* $P = (v_0, v_1, \ldots, v_t)$ is called M-augmenting if:

1. t is odd and v_0, v_1, \ldots, v_t are distinct;
2. $v_1v_2, v_3v_4, \ldots, v_{t-2}v_{t-1} \in M$
3. $v_0, v_t \notin M$.

Theorem: Either M has maximal cardinality or there is an M-augmenting path.
Alternating paths

Definition: A *path*

\[P = (v_0, v_1, \ldots, v_t) \]

is called *M*-alternating if exactly one of \(v_{i-1}v_i \) or \(v_i v_{i+1} \) belongs to \(M \), for each \(i \).

Every *M*-augmenting path is also *M*-alternating.

Let \(W \) be the vertices missed by \(M \). One can find the shortest *M*-alternating \(W - W \) path: Consider \(D = (V, A) \) where:

\[A := \left\{ (w, w') \mid \exists x \in V : (w, x) \in E, (x, w') \in M \right\}. \]

M-alternating \(W - W \) paths are directed paths from a vertex in \(W \) to a vertex with at least one neighbour in \(W \).
Alternating paths are not always augmenting

There is an alternating path from the free node 2 to free node 3:

This path is not augmenting, which is due to the blossom:
Shrinking a blossom

Shrinking the blossom yields the following:

In the new graph there is no augmenting path. Hence the matching is maximal.
M-blossoms

Definition: An M-alternating path is called an M-blossom if v_0, \ldots, v_{t-1} are distinct, $v_0 \in M$, and $v_t = v_0$.

Theorem: Let C be an M-blossom in G. Then M is maximal iff M/C is maximal in G/C.

Theorem Let $P = (v_0, v_1, \ldots, v_t)$ be a shortest even-length M-alternating $W - v$ path. Then P is simple or there exist $i < j$ such that $v_i = v_j$, i is even, j is odd, and v_0, \ldots, v_{j-1} are distinct.
Algorithm for maximal matching

Input: A matching M.
Output: A matching N with $|N| > |M|$ or a proof that M is maximal.

1. Let $W \subseteq V$ be the vertices missed by M. Is there an M-alternating $W - W$ path? If no, STOP (no M-augmenting path exists). If yes, go to step 2.

2. Let $P = (v_0, v_1, \ldots, v_t)$ be the shortest such path.

3. If P is M-augmenting, output $M \Delta EP$.

4. Choose $i < j$ such that $v_i = v_j$ and j as small as possible.
 Reset $M := M \Delta \{v_0v_1, v_1v_2, \ldots, v_{i-1}v_i\}$. Now, $C := (v_i, v_{i+1}, \ldots, v_j)$ is an M-blossom. Shrink the blossom and go to step 1.
Weighted matching

General problem: Given a graph $G = (V, E)$ and a weight function:

$$w : E \mapsto \mathbb{Q}.$$

find a perfect matching M minimizing

$$\sum_{e \in M} w(e).$$

We can assume G has a perfect matching and that $w(e) \geq 0$ (why?)

Applications

- The Chinese postman problem;
- An approximation algorithm for the traveling salesman problem.