Embedded Software

TI2726-B

- 2nd year BSc course
- Fast forward (10:1)
Embedded Programming

- More difficult than “classical” programming
 - Interaction with hardware
 - Real-time issues (timing)
 - Concurrency (multiple threads, scheduling, deadlock)
 - Need to understand underlying RTOS principles
 - Event-driven programming (interrupts)
- Lots of (novice) errors (hence the crisis)
Embedded Programming Example

- Automatic sliding gate task (thread):

```c
for (;;) {
    // wait to open
    while (inp(sensor) != 1) ;
    out(door,OPEN);
    // wait to close
    while (inp(sensor) == 1) ;
    sleep(1000);
    // close after timeout
    out(door,CLOSE);
}
```

- Any issues with this code?
Specifying: Finite State Machine

- Red arc missing from the specification
- Door can slam in your face!
Programming State Machines

- Finite State Machines
 - prime design pattern in embedded systems
- Transitions initiated by events
 - interrupts (timers, user input, …)
 - polling
- Actions
 - output
 - modifying system state (e.g., writing to global variables)
Running example

• See Wikipedia: Automata-based programming¹

• Consider a program in C that reads a text from the standard input stream, line by line, and prints the first word of each line. Words are delimited by spaces.

¹https://en.wikipedia.org/wiki/Automata-based_programming
Exercise (5 min)

Code

- Consider a program in C that reads a text from the standard input stream, line by line, and prints the first word of each line. Words are delimited by spaces.
#include <stdio.h>
#include <ctype.h>

int main(void)
{
 int c;
 do {
 do
 c = getchar();
 while (c == ' ');
 while (!isspace(c) && c != '\n' && c != EOF) {
 putchar(c);
 c = getchar();
 }
 putchar('
');
 while (c != '\n' && c != EOF)
 c = getchar();
 } while (c != EOF);
 return 0;
}
FSM

S = space
N = newline
A = all other chars
* = print

EOF
int main(void) {
 enum states {
 before, inside, after
 } state;
 int c;
 state = before;
 while((c = getchar()) != EOF) {
 switch(state) {
 case before:
 if(c != ' ') {
 putchar(c);
 if(c != '\n')
 state = inside;
 }
 break;
 case inside:
 break;
 case inside:
 }
 }
}
case inside:
 if(!isspace(c))
 putchar(c);
 else if(c == ' \n') {
 putchar(' \n');
 state = before;
 } else
 state = after;
 break;
case after:
 if(c == ' \n') {
 putchar(' \n');
 state = before;
 }
 break;
default:
 fprintf(stderr, "unknown state %p\n", state);
 abort();
enum states { before, inside, after }

void step(enum states *state, int c)
{
 switch(*state) {
 case before: ... *state = inside; ...
 case inside: ... *state = after; ...
 case after: ... *state = before; ...
 }
}

int main(void)
{
 int c;
 enum states state = before;
 while((c = getchar()) != EOF) {
 step(&state, c);
 }
 return 0;
}
FSM: table-based solution

- Transition:
 - action
 - next state

1. int main(void)
2. {
3. int c;
4. states state = before;
5. while((c = getchar()) != EOF) {
6. edges edge = lookup(state, c);
7. edge.action();
8. state = edge.next;
9. }
10. return 0;
11.}
FSM: table-based solution

- Transition:
 - action
 - next state

1. int main(void)
2. {
3. int c;
4. states state = before;
5. while((c = getchar()) != EOF) {
6. edges *edge = &lookup[state, c];
7. edge->action(c);
8. state = edge->next;
9. }
10. return 0;
11.}
What’s in the assignment?

BACK TO QUADCOPTERS
Controller Modes

- controller mode: manual
- controller model: calibrate
- controller mode: control (yaw, pitch, roll)
Quadrupel: FSM

From the assignment

- Safe
- Panic
- Calibrate
- Full control
- ...

CS4140 ESL (2017-2018)
Quadrupel: Control Loop

Loop
- Read sensors
- Compare with set points
- Set motor values
Quadrupel: FSM + control loop

PC \rightarrow FCB

FCB \rightarrow gyro/accel (6)
FCB \rightarrow motors (4)
FCB \rightarrow barometer

concurrency!
Communication protocol (lab 1)

- **PC -> Drone (send)**
 - periodic: pilot control
 - ad hoc: mode changing, param tuning

- **Drone -> PC (receive)**
 - periodic: telemetry (for visualization)
 - ad hoc: logging (for post-mortem analysis)

- Dependable, robust to data loss
 - header synch

CS4140 ESL (2017-2018)
Design your protocol (today!)

Packet layout
- start/stop byte(s)
- header, footer?
- fixed/variable length

Message types
- values (sizes)
- frequency

BW + processing constraints?!
System Architecture (today!)

- Functional decomposition
- Who does what?
- Interfaces
Software Architecture Survey

- Round-Robin (no interrupts)
- Round-Robin (with interrupts)
- Function-Queue Scheduling
- Real-Time OS

Motivates added value of RTOS
At the same time demonstrates you don’t always need to throw a full-fledged RTOS at your problem!
Round-Robin

```c
void main(void)
{
    while (TRUE) {
        !! poll device A
        !! service if needed
        ..
        !! poll device Z
        !! service if needed
    }
}
```

- polling: response time slow and stochastic
- fragile architecture
Round-Robin with Interrupts

```c
void isr_deviceA(void)
{
    !! service immediate needs + assert flag A
}
...

void main(void)
{
    while (TRUE) {
        !! poll device flag A
        !! service A if set and reset flag A
        ...
    }
    
    ◇ ISR (interrupt vs. polling!): much better response time
    ◇ main still slow (i.e., lower priority than ISRs)
```
RR versus RR+I

Interrupt feature introduces priority mechanism

Round-Robin

- high prio
- everything
- low prio

Round-Robin with interrupts

- devA ISR
- devB ISR
- devZ ISR
- task code
Example: Data Bridge

- IRQs on char rx and tx devices (UART)
- rx ISR reads UART and queues char
- tx ISR simply asserts ready flag
- main reads queues, decrypt/encrypts, writes queues, writes char to UART & de-asserts flag (critical section!)
- architecture can sustain data bursts
RR with Interrupts: Evaluation

- simple, and often appropriate (e.g., data bridge)
- main loop still suffers from stochastic response times
- interrupt feature has even aggravated this problem:
 fast ISR response at the expense of even slower main task (ISRs preempt main task because of their higher priority)
- this rules out RR+I for apps with CPU hogs
- moving workload into ISR is usually not a good idea as this will affect response times of other ISRs
Function-Queue Scheduling

```c
void isr_deviceA(void) {
    !! service immediate needs + queue A() at prio A
}
..

void main(void) {
    while (TRUE) {
        !! get function from queue + call it
    }
}

void function_A(void) { !! service A }
..
```
Function-Queue Sched: Evaluation

- task priorities no longer hardwired in the code (cf. RR architectures) but made flexible in terms of data
- each task can have its own priority
- response time of task T drops dramatically:
 \[\sum_{i \in \text{all} \setminus T} t_i \text{ (RR)} \text{ to } \max_{i \in \text{all} \setminus T} t_i \text{ (FQS)} \]
- still sometimes not good enough: need preemption at the task level, just like ISRs preempt tasks (in FQS a function must first finish execution before a context switch can be made)
Real-Time OS

```c
void isr_deviceA(void)
{
    // service immediate needs + set signal A
}

..

void taskA(void)
{
    // wait for signal A
    // service A
}

..
```

- includes task preemption by offering thread scheduling
- stable response times, even under code modifications
Performance Comparison

Round-Robin
high prio
Round-Robin
with interrupts
everything
RTOS
devA ISR
devB ISR
devZ ISR
devZ ISR
task code

low prio
task code A
task code B
task code Z
RTOS: Primary Motivation

- Task switching with *priority preemption*
- Additional services (semaphores, timers, queues, ..)
- Better code!
 - Having interrupt facilities, one doesn’t always need to throw a full-fledged RTOS at a problem
 - However, in vast majority of the cases the code becomes (1) cleaner, (2) much more readable by another programmer, (3) less buggy, (4) more efficient
- The price: negligible run-time overhead and small footprint
Interrupts are evil

- Concurrent execution
- Shared data problem
Shared-Data Problem?

```c
void isr_read_temps(void)
{
    iTemp[0] = peripherals[..];
    iTemp[1] = peripherals[..];
}

void main(void)
{
    ...
    while (TRUE) {
        tmp0 = iTemp[0];
        tmp1 = iTemp[1];
        if (tmp0 != tmp1)
            panic();
    }
}
```

Book: page 92 ...
Finding this bug...

- Can be very tricky
 - The bug does not occur always!
- Frequency depends on
 - The frequency of interrupts
 - Length of the critical section
- Problem can be difficult to reproduce

- Advise: double check the access on data used by ISR!
Solving the Data-Sharing Problem?

```c
void isr_read_temps(void)
{
    iTemp[0] = peripherals[..];
    iTemp[1] = peripherals[..];
}

void main(void)
{
    ...
    while (TRUE) {
        if (iTemp[0] != iTemp[1])
            panic();
    }
}
```

```asm
MOVE R1, (iTemp[0])
MOVE R2, (iTemp[1])
SUBTRACT R1,R2
JCOND ZERO, TEMP_OK
...
...
TEMP_OK:
...```

Solution #1

- Disable interrupts for the ISRs that share the data

```c
... while (TRUE) {
 !! DISABLE INT
 tmp0 = iTemp[0];
 tmp1 = iTemp[1];
 !! ENABLE INT
 if (tmp0 != tmp1)
 panic();
}
```

The critical section is now atomic
Atomic & critical section

- A part of a program is atomic if it cannot be interrupted
  - Interrupts and program code share data
- *atomic* can also refer to mutual exclusion
  - Two pieces of code sharing data
  - They can be interrupted
- The instructions that must be atomic = *critical section*
Be careful!

```c
static int iSeconds, iMinutes;

void interrupt vUpdateTime(void)
{
 ++iSeconds;
 if (iSeconds>=60) {
 iSeconds=0;
 ++iMinutes;
 }
}

long lSeconds(void)
{
 disable();
 return (iMinutes*60+iSeconds);
 enable();
}
```

too little, too late 😞
Function calls and enable()

- enable() can be a source of bugs!

```c
void function1 () {
 ...
 // enter critical section
disable();
 ...
 temp = f2();
 ...
 // exit critical section
enable();
 ...
}

int f2 () {
 ...
 disable();
 ...
 enable();
 ...
}
```

should test if this is fine
static long int lSecondsToday;

void interrupt vUpdateTime()
{
    ...
    ++lSecondsToday;
    ...
}

long lGetSeconds()
{
    return (lSecondsToday);
}
Any issues here?

```java
static long int lSecondsToday;

void interrupt vUpdateTime()
{
 ++lSecondsToday;
}

long lGetSeconds()
{
 long lReturn;

 lReturn = lSecondsToday;
 while (lReturn!=lSecondsToday)
 lReturn = lSecondsToday;

 return (lReturn);
}
```

ingenious code without interrupts
volatile static long int lSecondsToday;

void interrupt vUpdateTime()
{
    ++lSecondsToday;
}

long lGetSeconds()
{
    long lReturn;

    lReturn = lSecondsToday;
    while (lReturn!=lSecondsToday)
        lReturn = lSecondsToday;

    return (lReturn);
}
Interrupt Latency

• Quick response to IRQ may be needed
• Depends on previous rules:
  • The longest period of time in which interrupts are disabled
  • The time taken for the higher priority interrupts
  • Overhead operations on the processor (finish, stop, etc.)
  • Context save/restore in interrupt routine
  • The work load of the interrupt itself
• worst-case latency = t_maxdisabled + t_higher_prio_ISR + t_myISR + context switches