
Predicting Class Testability using Object-Oriented Metrics

Magiel Bruntink
CWI, P.O Box 94079

1098 SJ Amsterdam, The Netherlands
Magiel.Bruntink@cwi.nl

Arie van Deursen
CWI and Delft University of Technology

P.O Box 94079, 1098 SJ Amsterdam, The Netherlands
Arie.van.Deursen@cwi.nl

Abstract

In this paper we investigate factors of the testability of
object-oriented software systems. The starting point is given
by a study of the literature to obtain both an initial model
of testability and existing OO metrics related to testability.
Subsequently, these metrics are evaluated by means of two
case studies of large Java systems for which JUnit test cases
exist. The goal of this paper is to define and evaluate a set
of metrics that can be used to assess the testability of the
classes of a Java system.

1. Introduction

What is it that makes code hard to test? Why is one class
easier to test than another? How can I tell that I’m writing a
class that will be hard to test? What contributes to a class’
testability? How can we quantify this notion?

Software testability is affected by many different factors,
including the required validity, the process and tools used,
the representation of the requirements, and so on — in the
next section we will survey what has been written on this
topic so far. This paper investigates testability from the per-
spective of unit testing, where our units consist of the classes
of an object-oriented software system.

Our approach is to evaluate a set of object-oriented met-
rics with respect to their capabilities to predict the effort
needed for testing. We choose this approach because met-
rics are a good driver for the investigation of aspects of soft-
ware. The evaluation of metrics that are thought to have a
bearing on the testing effort allows us, on the one hand, to
gain insight into the factors of testability, and to obtain re-
fined metrics on the other. Both results can subsequently be
used in further studies.

The current popularity of the JUnit1 framework for writ-
ing Java unit tests [3] provides a unique opportunity to pur-
sue this approach and increase our understanding of testabil-
ity. Test cases in JUnit are written in Java. A typical usage
of JUnit is to test each Java class C by means of a dedicated
test class CT . Each pair 〈C,CT 〉 allows us to compare prop-

1Web: http://www.junit.org

erties of C’s source code with properties of its test class CT .
The route we pursue in this paper is to use these pairs to find
source code metrics on C that are good predictors of test-
related metrics on CT .

We were triggered to investigate testability for two rea-
sons. The first one is essentially scientific curiosity: while
writing our own test cases we wondered why it was that for
one class we had to think very hard before we were able to
write a meaningful unit test suite, whereas for other classes
we could generate test cases in a straightforward way. Thus,
we started our research in order to get a better understanding
of what contributes to good testability. Since testability holds
a prominent place as part of the maintainability characteris-
tic of the ISO 9126 quality model [13], this also increases
our understanding of software quality in general.

Our second reason is more practical in nature: having
quantitative data on testability is of immediate use in the soft-
ware development process. The software manager can use
such data to plan and monitor testing activities. The tester
can use testability information to determine on what code
to focus during testing. And finally, the software developer
can use testability metrics to review his code, trying to find
refactorings that would improve the testability of the code.

In this paper we describe our current results in character-
izing software testability for object-oriented systems using
source code metrics. We start out by surveying related work
on (prediction of) testability. Then, in Section 3, we discuss
factors affecting testability, narrowing down this very gen-
eral notion to the source code perspective. In Section 4, we
list our selection of object-oriented metrics, describe the ex-
perimental design, define metrics on JUnit test classes, and
discuss the statistical techniques we use to investigate the re-
lationships between these metrics. In Section 5 we describe
the results of applying the experiment to Java systems ac-
companied by JUnit test cases. Moreover, we provide an in-
depth discussion of the various (testability) factors that help
to explain our results. We conclude by summarizing our con-
tributions and listing areas of future work.

1

2. Related Work

A number of testability theories have been published in the
literature.

Voas et. al. [19] define software testability as the prob-
ability that a piece of software will fail on its next execu-
tion during testing, provided it contains a fault. This fault
sensitivity is obtained by multiplying the probabilities that
(1) the location containing the fault is executed; (2) the fault
corrupts the program’s state; and (3) the corrupted state gets
propagated to the output. High fault sensitivity indicates high
testability and vice versa.

Voas and Miller [20] present a different approach to fault
sensitivity, in which semantic information contained in pro-
gram specification and design documents is analyzed. An
upper-bound on a component’s fault sensitivity is given by
the amount of information loss occurring within the com-
ponent. Information loss can appear in roughly two guises:
Explicit information loss occurs because the values of vari-
ables local to the component may not be visible at the system
level, and thus cannot be inspected during testing. Implicit
information loss is a consequence of the domain/range ratio
(DRR) of the component. The DRR of a component is given
by the ratio of the cardinality of the input to the cardinality
of the output.

McGregor et. al. [15] attempt to determine the testability
of an object-oriented system. They introduce the “visibility
component” measure (VC for short), which can be regarded
as an adapted version of the DRR measure. The VC has
been designed to be sensitive to object oriented features such
as inheritance, encapsulation, collaboration and exceptions.
Furthermore, a major goal of the VC is the capability to use
it during the early phases of a development process. Cal-
culation of the VC will thus require accurate and complete
specification documents.

Freedman [11] proposes “domain testability”, based on
the notions of observability and controllability as adopted in
hardware testing. Observability captures the degree to which
a component can be observed to generate the correct output
for a given input. The notion of ‘controllability’ relates to
the possibility of a component generating all values of its
specified output domain. Adapting (the specification of) a
component such that it becomes observable and controllable
can be done by introducing extensions. Observable exten-
sions add inputs to account for previously implicit states in
the component. Controllable extensions modify the output
domain such that all specified output values can be gener-
ated. Freedman proposes to measure the number of bits re-
quired to implement observable and controllable extensions
to obtain an index of observability and controllability, and
consequently a measure of testability.

Jungmayr [14] takes an integration testing point of view,
and focuses on dependencies between components. He pro-

requirements specification

exception

traceability

test tools

process capability

test suite

implementation

documentation

reuseabilityoracle

verification

developement
test case

interoperability automation

commitment effectiveness

integrated
test strategy

staff
capability

test effort

determinism

external
handlinginterface

source code
factors

testing criterion

documentation

Figure 1. The testability fish-bone.

poses the notion of test-critical dependencies as well as met-
rics to identify them and subsequently removing them using
dedicated refactorings.

Focusing on testability analysis of UML class diagrams,
Baudry et. al. [1] propose the use of various coupling and
class interaction metrics to characterize testability.

Because of our focus on object-oriented white box unit
testing we could not immediately reuse these models in our
setting: some of the metrics contained in these models are
not computable from source code alone; and not all assump-
tions (such as the assumption that testing proceeds in a black
box fashion) applied to our setting. The model we use in-
stead, which is partly based work by Binder [4], is discussed
in Section 3.

3. Testability

The ISO defines testability as “attributes of software that bear
on the effort needed to validate the software product” [13].
Binder [4] offers an analysis of the various factors that con-
tribute to a system’s testability. We will use an adapted ver-
sion of his “fish bone” diagram (see Figure 1) to identify
which factors of testability we address in the current paper.

2

3.1. Major Factors

Testing Criterion A major factor of the test effort picture is
the degree of validity that the software is required to have.
Based on the validity requirements, a project uses a testing
criterion (or code coverage criterion) that specifies which
parts of the software have to be tested. In effect, a testing
criterion will establish a lower bound on the validity of the
software, and an upper bound on the number of test cases re-
quired. A project will thus have to make a trade-off between
the verification of validity on the one hand, and the required
amount of testing on the other.

Documentation There are many reasons why a software
system should be accompanied by documentation of several
kinds. With regards to testing, requirements and specifica-
tions are of prime importance, capturing required and speci-
fied behavior, respectively. These documents should be cor-
rect and complete, and clear links should exist between the
concepts captured in the various documents.

Implementation The implementation is the target of all
testing, and thus the extent to which the implementation al-
lows itself to be tested is a key factor of the testing effort.
One important aspect of the implementation is determinism;
it should be possible to consistently repeat tests.

The major part of the implementation of an application
consists of source code expressed in one or more program-
ming languages. Factors of the source code that relate to the
testability of the implementation, and thus the testing effort,
are the topic of this paper.

Test Suite Factors of the test suite itself also determine
the effort required to test. Desirable features of test suites
are correctness, automated execution and reuse of test cases.
Similar to the system-under-test, test suites need documenta-
tion detailing the implemented tests, a test plan, test results
of previous test runs and reports.

Test Tools The presence of appropriate test tools can alle-
viate many problems that originate in other parts of the ‘fish
bone’ figure. For example, easy-to-use tools will demand
less of the staff responsible for testing. Test case definition
in the presence of graphical user interfaces is another exam-
ple where tooling can significantly reduce the required effort.

Process Capability The organizational structure, staff
and resources supporting a certain activity are typically re-
ferred to collectively as a (business) process. Properties of
the testing process obviously have great influence on the ef-
fort required to perform testing. Important factors include
a commitment of the larger organization to support testing,
through funding, empowerment of those responsible, and
provision of capable staff.

3.2. Source Code Factors

As a preparation for the experiments we describe in Sec-
tion 4, we provide a short discussion of source code factors in

general. Since our approach is exploratory in nature, rather
than theoretical, the resulting ‘model’ of source code factors
and their relation to testability is not intended to be complete.

We distinguish between two categories of source code
factors: factors that influence the number of test cases re-
quired to test the system, and factors that influence the effort
required to develop each individual test case. We will refer
to the former category as test case generation factors, and to
the latter category as test case construction factors.

3.2.1. Test Case Generation Factors

The number of test cases to be created and executed is deter-
mined by source code factors as well as the testing criterion.
In many cases, the testing criterion determines which source
code factors actually influence the number of required test
cases. For example, McCabe’s structured testing [21] gen-
erates test cases based on a program’s control-flow. Accord-
ing to the structured testing criterion, a “basis set of paths
through the control-flow graph of each module” has to be
tested.

Object-oriented languages have some specific features
that set them apart from procedural languages. These fea-
tures may have their bearing on testing object-oriented pro-
grams. First, inheritance is a mechanism which allows
classes to share their methods and fields. The set of meth-
ods and fields of a class is thus the union of the methods and
fields that the class inherits, and those defined by the class it-
self. Depending on the object-oriented language, classes can
also redefine the methods they inherit.

It is easy to see that inheritance is possibly a test case
generation factor. For example, given that the project has
decided to test all – inherited and defined – methods of each
class, clearly the number of inherited methods of a class will
influence the number of required test cases.

Second, polymorphism is a feature of object-oriented lan-
guages that allows objects to belong to multiple classes.
Consider two classes, A and B. Let’s say that A is the su-
perclass of B. Now, objects of type class B are also objects
of type class A. In practice this means that objects of type
class B will be able to fill the role of objects of type class A.
Because of this phenomenon, the use of polymorphic types
can possibly increase the number of test cases required to
cover all the cases. Of course, the testing criterion deter-
mines whether the additional cases have to be covered at all.
For an up-to-date discussion of testing approaches for poly-
morphic types we refer the reader to [17].

3.2.2. Test Case Construction Factors

Once you know what needs to be tested according to your
testing criterion, it may seem that creating the required test
cases is a trivial task. However, as it turns out, the construc-
tion of test cases is at least as difficult a problem as finding

3

out what you need to test. For example, McCabe’s struc-
tured testing criterion can require that unreachable control-
flow paths are exercised.

Even if a test case is constructible in theory, there are
source code factors that influence the effort needed to con-
struct it. The class-under-test will need to be initialized such
that effective testing can be done. In our case, this entails
that the fields of (an object of) a class are set to the right val-
ues before a test case can be executed. Furthermore, if the
class-under-test depends on other classes – because it used
members of those classes – those will need to be initialized.
A class which deals with external interfaces (hardware, etc.)
will typically require the external components to be initial-
ized as well. Due to our focus on source code factors, we
will not consider the latter source of initialization work. In
sections 4 and 5 we investigate whether or not these source
code factors influence the testing effort.

4. Experimental Design

The objective of this paper is to evaluate to what extent a
number of well-known object-oriented metrics can be used
to predict class testability. In this section, we first (4.1) iden-
tify possibly relevant metrics, and then we turn this relevance
into a hypothesis to be analyzed (4.2). Subsequently, we de-
scribe test suite metrics (4.3), as well as the statistical meth-
ods that can be used to evaluate the hypothesis (4.4).

4.1. Object-Oriented Metrics

What metrics are suitable candidates for characterizing the
testability factors discussed in the previous section? We will
use a metrics suite proposed by Binder [4] as starting point.
Binder is interested in testability as well, and uses a model
distinguishing “complexity” and “scope” factors, which are
similar to our test case construction and generation factors.
Unfortunately, Binder does not provide an operational def-
inition of the metrics used. In this section, we define each
metric used operationally.

The metrics used by Binder are based on the well known
metrics suite provided by Chidamber and Kemerer [9], who
for some of their metrics (such as the Coupling Between Ob-
jects and the Response for Class) already suggested that they
would have a bearing on test effort.

In the related work section (2) we discuss various alterna-
tive metrics indicative of testability. The metrics discussed
below and used in our experiment have the advantage of be-
ing easier to implement and understand.

4.1.1. Notation

To give each metric a concise and unambiguous definition,
we use the notation introduced by Briand et. al. [7].

Definition 1 (Classes) An object-oriented system consists of
a set of classes, C. For every class c ∈C we have:

• Parent(c)⊂C, the parent class of c.

• Children(c) ⊂ C, the set of classes that inherit directly
from c.

• Ancestors(c)⊂C, the set of classes from which c inher-
its either directly or indirectly.

Definition 2 (Methods) Let c ∈C, then we have:

• MIn(c), the set of methods that c inherits.

• MD(c), the set of methods that c newly declares, i.e.
m ∈ MD(c) iff m is declared in c and m /∈ MIn.

• MIm(c), the set of methods that c implements, i.e. c de-
fines a body for m. Clearly, for each m ∈ MIm(c) either
m ∈ MIn or m ∈ MD.

• M(c) = MD(c)∪MIn(c), the set of methods of c.

• M(C) = ∪c ∈CM(c), the set of all methods.

Definition 3 (Method Invocations) Let c ∈C,
m ∈ MIm(c) and m′ ∈ M(C), then we have:

• MI(m), the set of methods invoked by m. m′ ∈ MI(m) iff
the body of m contains an invocation of method m′.

Definition 4 (Fields) Let c ∈C, then we have:

• FIn(c), the set of fields that c inherits.

• FD(c), the set of fields that c newly declares, i.e. f ∈
FD(c) iff f is declared in c and f /∈ FIn.

• F(c) = FIn ∪FD, the set of fields of c.

• F(C) = ∪c ∈C F(c), the set of all fields.

Definition 5 (Field References) Let m ∈ MIm(c) for some
c ∈C and f ∈ F(C), then we have:

• f ∈ FR(m) iff the body of m contains a reference to f .

4.1.2. Metrics

We now introduce the metrics that we evaluate in our exper-
iments. Let c ∈C be a class.

Depth of Inheritance Tree

DIT(c) = |Ancestors(c)|

The definition of DIT relies on the assumption that we deal
with object-oriented programming languages that allow each
class to have at most one parent class; only then will the
number of ancestors of c correspond to the depth of c in the
inheritance tree. Our subject language – Java – complies to
this requirement, however C++ does not.

4

Fan Out

FOUT(c) = |{d ∈C−{c} : uses(c,d)}|

where uses(c,d) is a predicate that is defined by:

uses(c,d) ↔
(∃m ∈ MIm(c) : ∃m′ ∈ MIm(d) : m′ ∈ MI(m))

∨ (∃m ∈ MIm(c) : ∃a ∈ F(d) : a ∈ FR(m))

In words, uses(c,d) holds if and only if a method of c either
calls a method or references a field of d.

Lack Of Cohesion Of Methods

LCOM(c) =

(1
a ∑ f∈FD(c) µ(f)

)

−n

1−n

where a = |FD(c)|, n = |MIm(c)| and µ(g) = |{m ∈ MIm(c) :
g ∈ FR(m)}|, the number of implemented methods of class
c that reference field g.

This definition of LCOM is proposed by Henderson-
Sellers in [12]. It is easier to both compute and interpret
compared to Chidamber and Kemerer’s definition of the met-
ric. The metric yields 0, indicating perfect cohesion, if all the
fields of c are accessed by all the methods of c. Conversely,
complete lack of cohesion is indicated by a value of 1, which
occurs if each field of c is accessed by exactly 1 method of
c. It is assumed that each field is accessed by at least one
method, furthermore, classes with one method or no fields
pose a problem; such classes are ignored during calculation
of the LCOM metric.

Lines Of Code Per Class

LOCC(c) = ∑
m ∈ MIm(c)

LOC(m)

where LOC(m) is the number of lines of code of method
m, ignoring both blank lines and lines containing only com-
ments.

Number Of Children

NOC(c) = |Children(c)|

Number Of Fields

NOF(c) = |FD(c)|

Number Of Methods

NOM(c) = |MD(c)|

Response For Class

RFC(c) = |M(c)∪m∈M(c) MI(m)|

The RFC of c is a count of the number of methods of c and
the number of methods of other classes that are invoked by
the methods of c.

Weighted Methods Per Class

WMC(c) = ∑
m ∈ MIm(c)

VG(m)

where VG(m) is McCabe’s cyclomatic complexity
number[21] for method m.

4.2. Goal and Hypotheses

We set up our experiments for evaluating this set of metrics
using the GQM/MEDEA2 framework proposed by Basili et.
al. [8]. First, we describe the goal, perspective and environ-
ment of our experiment:

Goal: To assess the capability of the proposed object-
oriented metrics to predict the testing effort.

Perspective: We evaluate the object-oriented metrics at the
class level, and limit the testing effort to the unit test-
ing of classes. Thus, we are assessing whether or not
the values of the object-oriented metrics can predict the
required amount of effort needed for unit testing a class.

Environment: The experiments are targeted at Java sys-
tems, which are unit tested at the class level using the
JUnit testing framework. Further relevant factors of
these systems will be described in Section 5.

The JUnit framework allows the user to create (and run)
classes that are capable of unit testing a part of the sys-
tem. A typical practice is to create a test class for ev-
ery class of the system. We target at subject systems
in which there is one test class responsible for the unit
testing of each class.

To help us translate the goal into measurements, we pose
questions that pertain to the goal:

Question 1: Are the values of the object-oriented metrics
for a class correlated to the required testing effort for
that class?

Answering this question directly relates to reaching the
goal of the experiments. However, to answer it, we must
first quantify “testing effort.” To indicate the testing effort
required for a class we use the size of the corresponding

2Goal Question Metric / MEtric DEfinition Approach

5

test suite. Well-known cost models such as Boehm’s CO-
COMO [6] and Putnam’s SLIM model [16] relate develop-
ment cost and effort to software size. Test suites are software
in their own right; they have to be developed and maintained
just like ‘normal’ software. In Section 4.3 we will define
precisely which metrics we use to measure the size of a test
suite.

Now we refine our original question, and obtain the fol-
lowing new question:

Question 2: Are the values of the object-oriented metrics
for a class correlated to the size of the corresponding
test suite?

From these questions we derive the hypotheses that our
experiments will test:

H0(m,n): There is no correlation between object-oriented
metric m and test suite metric n,

H1(m,n): There is a correlation between object-oriented
metric m and test suite metric n,

where m ranges over our set of object-oriented metrics, and
n over our set of test-suite based metrics.

4.3. Test Suite Metrics

For our experiments we propose the dLOCC (Lines Of Code
for Class) and dNOTC (Number of Test Cases) metrics to
indicate the size of a test suite. The ‘d’ prepended to the
names of these metrics denotes that they are the dependent
variables of our experiment, i.e. the variables we want to
predict. The dLOCC metric is defined like the LOCC metric.

The dNOTC metric provides a different perspective on the
size of a test suite. It is calculated by counting the num-
ber of invocations of JUnit ‘assert’ methods that occur in the
code of a test class. JUnit provides the tester with a num-
ber of different ‘assert’ methods, for example ‘assertTrue’,
‘assertFalse’ or ‘assertEqual’. The operation of these meth-
ods is the same; the parameters passed to the method are
tested for compliance to some condition, depending on the
specific variant. For example, ‘assertTrue’ tests whether or
not its parameter evaluates to ‘true’. If the parameters do not
satisfy the condition, the framework generates an exception
that indicates a test has failed. Thus, the tester uses the set
of JUnit ‘assert’ methods to compare the expected behavior
of the class-under-test to its current behavior. Counting the
number of invocations of ‘assert’ methods, gives the num-
ber of comparisons between expected and current behavior
which we consider an appropriate definition of a test case.

4.4. Statistical Analysis

In order to investigate our hypotheses, we calculate Spear-
man’s rank-order correlation coefficient, rs, for each object-
oriented metric of the system classes and both the dLOCC

and dNOTC metrics of the corresponding test classes. We
use rs(m,n) to denote Spearman’s rank-order correlation be-
tween object-oriented metric m and test suite metric n.

Spearman’s rank-order correlation coefficient is a mea-
sure of association between two variables that are measured
in at least an ordinal scale [18]. The measurements are
ranked according to both variables. Subsequently, the mea-
sure of association is derived from the level of agreement of
the two rankings on the rank of each measurement. We de-
cided to use this correlation measurement (and not the more
common Pearson correlation), since rs can be applied inde-
pendent of the underlying data distribution, and independent
of the nature of the relationship (which need not be linear).

In order to test our hypothesis we estimate the statisti-
cal significance of the observed value of rs by calculating the
t statistic [18]. This statistic provides a significance p (which
indicates the probability that the observed value is a chance
event) based on the number of pairs in the data set. The sign-
ficance p allows us to reject H0(m,n) (and accept H1(m,n))
with a certain level of confidence.

To calculate rs, we need to find the corresponding test
class for every system class. The JUnit documentation sug-
gests that test classes should be named after the class they
test, by appending “Test” to the class’ name, a convention
used in both our subject systems.

Both rs and t are calculated for each object-oriented met-
ric m and the dLOCC and dNOTC metrics of the test suite.
First, the values for all classes for object-oriented metric m
are fetched from a repository. Subsequently, each value for
a class is paired with both the dLOCC and dNOTC values of
the corresponding test class. The resulting pairs are then used
to calculate rs. Finally, t is derived from the value of rs and
the number of pairs involved, and the statistical significance
(p) of t is obtained from a standard table [18]. This process
is repeated for all the object-oriented metrics in our set, and
finally the results are presented in a table (see section 5).

5. Case Studies

We used two software systems for our experiments. The first
is DocGen, a commercial source code documentation tool
in development at the Software Improvement Group. The
second is Apache Ant, an open source automation tool for
software development. Both systems are unit tested at the
class level by means of JUnit. We first present the results
of the experiments, and then discuss them at the end of the
section.

5.1. DocGen

DocGen is a documentation generator, developed by the
Software Improvement Group (SIG). It processes source
code of other programs, and generates technical documen-

6

tation based on facts that are contained in the source code.
DocGen is described in more detail in [10].

The DocGen source code consists of 90,000 lines of Java
code, divided over 66 packages containing 640 classes in to-
tal. Of these 640 classes, 138 classes have an associated test
class. The classes which have an associated test class are
used for our experiment.

The development of DocGen is based on Kent Beck’s eX-
treme Programming (XP) methodology [2]. The use of cod-
ing standards has a clear implication for the structure of the
code; methods are not allowed to exceed 12 lines. Addition-
ally, the testing of DocGen is not a separate process; it is an
integral part of the development process. The DocGen devel-
opers take testing very seriously, and they are convinced that
they do a good job on software testing. There is, however,
no explicit testing criterion in use: programmers select test
cases based on personal judgement.

5.2. Apache Ant

Ant3 is a build tool, and is being developed as a subproject
of the Apache web server. Ant’s source code is larger than
Docgen, and comprises 170,000 lines of Java code. There are
887 classes contained in 87 packages. Again, our experiment
uses the classes that have an associated test class; there are
111 such classes. The Ant source code is kept in a public
CVS repository, from which we obtained the 1.5.3 branch,
dated April 16, 2003.

The testing process at the Ant project is similar to that
of DocGen. Programmers develop JUnit test cases during
development, and run these tests nightly. Additionally, the
functional correctness of the entire system is verified every
night by running Ant in a typical production environment.
Again, there is no explicit testing criterion; test cases are cre-
ated based on the preference of the programmers.

5.3. Data Collection

In order to collect data from subject systems, we have used
the Eclipse platform4 to calculate the metrics. An existing
plug-in for Eclipse, the “Eclipse metrics plug-in”5, has been
extended to calculate our set of metrics for a given system,
and to store the results in a source code repository based on
a relational database.

5.4. Results

Table 1 holds the results of the experiments described in Sec-
tion 4 for both DocGen and Ant. The table contains the val-
ues of Spearman’s rank-order correlation coefficient (rs) for
object-oriented metric m and both test suite metrics dLOCC

3Web: http://ant.apache.org
4Web: http://www.eclipse.org
5Web: http://sourceforge.net/projects/metrics

and dNOTC. The object-oriented metrics which are signifi-
cantly correlated to the test suite metrics at the 99% confi-
dence level, are set in boldface in Table 1. For these, we can
reject H0(m,n) and accept H1(m,n). Note that the accepted
hypotheses for Ant and DocGen are the same, except for the
LCOM metric, which is significantly correlated in Ant, but
not in DocGen.

DocGen dLOCC dNOTC
DIT -.03675 -.0590
FOUT .5549 .457
LCOM .166 .207
LOCC .513 .518
NOC -.0274 .00241
NOF .248 .233
NOM .355 .401
RFC .537 .520
WMC .422 .460

Ant dLOCC dNOTC
DIT -.0456 -.201
FOUT .465 .307
LCOM .437 .382
LOCC .500 .325
NOC .0537 -.0262
NOF .455 .294
NOM .532 .369
RFC .526 .341
WMC .531 .348

Table 1. Spearman’s rs values.

Additionally, Table 2 provides the correlations among the
object-oriented metrics themselves.

5.5. Discussion

What can we learn from the data collected from Table 1?
How can we explain these figures? What do these figures tell
us about the impact of source code factors and testability? In
this section we will discuss these results, making use of the
test case generation (number of test cases) and test case con-
struction (complexity of the test cases) factors as discussed
in Section 3.

A first observation to make is that the source code met-
rics themselves are correlated: we naturally expect that a
large class (high LOCC) has a large number of methods
(high NOM). The correlations between the various metrics
are listed in Table 2. We use these correlations to organize
our discussion, and cover clusters of correlated metrics.

A second observation is that the test suite metrics are cor-
related as well: the larger a test class (dLOCC), the more
assertions it will contain (dNOTC).

However, some source code metrics are better predictors
of dLOCC than of dNOTC. Using Hotelling’s t test to de-
termine the statistical significance of the difference between
two correlations, we find that for DocGen, fan out (FOUT) is
a significantly better predictor of the number of lines of test
class (dLOCC) than the number of test cases (dNOTC). For
Ant, the metrics FOUT, LOCC, RFC, NOF, NOM and WMC
are significantly better predictors of dLOCC than of dNOTC.

Apparently these metrics predict a factor of test classes
which distinguishes dLOCC and dNOTC. We conjecture that
a distinguishing factor might be the effort, expressed in lines
of code, required to construct the test cases, i.e. describe
the test cases themselves, and provide sufficient initialization
of the system. In effect, the object-oriented metrics which

7

DocGen DIT FOUT LCOM LOCC NOC NOF NOM RFC WMC
DIT 1
FOUT -.0287 1
LCOM -.0879 .317 1
LOCC -.129 .691 .379 1
NOC .0511 .0506 .0134 .204 1
NOF -.252 .365 .766 .444 .0520 1
NOM .0750 .546 .481 .847 .226 .443 1
RFC -.00672 .837 .420 .894 .184 .432 .867 1
WMC -.0351 .579 .436 .931 .208 .421 .952 .879 1

Ant DIT FOUT LCOM LOCC NOC NOF NOM RFC WMC
DIT 1
FOUT .120 1
LCOM .0201 .306 1
LOCC .142 .911 .311 1
NOC -.0762 -.0794 -.0723 .0289 1
NOF .105 .686 .462 .747 .109 1
NOM .00869 .704 .436 .819 .216 .825 1
RFC .150 .929 .344 .944 .0229 .789 .861 1
WMC .126 .865 .354 .975 .0963 .784 .899 .945 1

Table 2. rs values between the OO metrics.

predict dLOCC better than dNOTC would then measure test
case construction factors. Below we provide more discussion
on test case construction factors for the individual metrics.

5.5.1. Size-Related Metrics

The first cluster of metrics we discuss measures the size of
the source code. These include the lines of code (LOCC),
and the number of fields (NOF) and methods (NOM and
WMC).

Naturally, we expect that a large class needs a large cor-
responding test class, so we are not surprised to see that all
four metrics are correlated with both test suite metrics in Ant
as well as DocGen. The size of the class is first of all a test
case generation factor: a larger class requires more test cases
(higher dNOTC). At the same time, a larger class may be
harder to test (higher dLOCC), because of intra-class depen-
dencies, making size a test case construction factor as well.

Number Of Fields (NOF)
The fields of the class-under-test need to be initialized be-
fore testing can be done. We argued before that the amount
of required initialization influences the testing effort and the
dLOCC metric. Thus, we expect correlation between the
NOF and dLOCC metrics. However, for DocGen the cor-
relation we observe is only weak (but significant), while for
Ant it is moderate. Neither is the correlation between NOF
and dLOCC significantly better than the correlation between
NOF and dNOTC for DocGen, though it is for Ant. A pos-
sible explanation is given by the definition of the NOF met-
ric. In section 4 NOF(c) is defined by NOF(c) = |FD(c)|.
In words, NOF(c) is a count of the number of fields class c
(newly) declares. The number of fields that class c inherits
from its ancestors is therefore not included in the count. If
classes tend to use fields they have inherited, the NOF metric
may not be a sufficient predictor of the initialization required

for testing. Whether or not this explains the difference be-
tween the observed correlations for DocGen and Ant remains
the subject of further research.

Number of Methods (NOM)
One would expect that the number of methods primarily af-
fects the number of test cases to be written (at least one test
case per method), and not the complexity required to write
the test cases. Thus, NOM is a test case generation rather
than construction factor, and we would expect NOM to pre-
dict dLOCC and dNOTC equally well. DocGen indeed lives
up to the expectation.

However, in the case of Ant, the difference between the
dLOCC and dNOTC correlations is significant. A possible
explanation for this is that for Ant the correlation between
the NOM and NOF metrics is strong (see Table 2), i.e. the
number of methods of a class is a strong predictor of the
number of fields of a class. We saw before how the number
of fields of a class can influence the effort needed to test, i.e.
the dLOCC metric. Thus, the correlation between the NOM
and dLOCC metrics for Ant could be explained indirectly
via the NOF metric. The fact that the correlation between
the NOM and NOF metrics is only moderate for DocGen
confirms this explanation.

Weighted Methods Per Class (WMC)
The WMC metric also counts the methods per class, but
weighs them with McCabe’s cyclomatic complexity number.

We observe that the WMC metric correlates strongly with
the NOM metric for both DocGen and Ant (see Table 2).
Also, the relationships to the other metrics are very similar
for both WMC and NOM. An explanation is offered by the
fact that for both systems, the VG value of each method tends
to be low, and close to the average. For DocGen, we have an
average VG of 1.31, with standard deviation of 0.874 and
maximum of 17. For Ant, we have an average VG of 2.14,
with standard deviation of 2.91 and maximum of 61. Thus,
for our systems the WMC metric will tend to measure the
number of methods, i.e. the NOM metric. We conclude that
the same effects explain the correlations with the test suite
metrics for both WMC and NOM.

As a side note, the low average, standard deviation and
maximum values of the VG of the methods of DocGen are
a result of a coding standard in use at the SIG. According to
the coding standard, each method should not contain more
than 12 lines of code.

5.5.2. Inheritance-Related Metrics

The second group of metrics we consider deals with inher-
itance: DIT measures the superclasses (the depth of the in-
heritance tree), whereas NOC measures the subclasses (the
number of children). Somewhat surprisingly, neither of these

8

metrics are correlated to any test suite metrics in either case
study.

Under what test strategies would these metrics be good
indicators for the size of a test class? For DIT, if we require
that all inherited methods are retested in any subtype (see,
e.g., [5]), the depth of inheritance DIT metric is likely to be
correlated with test suite size — assuming that more super-
classes lead to more inherited fields and methods.

For NOC, we would obtain a correlation with test size
if our test strategy would prescribe that classes that have
many subtypes are more thoroughly tested. This would make
sense, since errors in the superclass are likely to recur in any
subclass. Moreover, if the classes are designed properly (ad-
hering to the Liskov Substitution Principle), superclass test
cases can be reused in any subclass (see, e.g., [5]).

From the fact that DIT nor NOC are correlated with test
class size, we conclude that in the subject systems studied
these strategies were not adopted by the developers.

5.5.3. External Dependencies

The Fan Out (FOUT) and Response-For-Class (RFC) met-
rics measure dependencies on external classes (FOUT) and
methods (RFC). In both case studies these metrics are signif-
icantly correlated with both test suite metrics.

Fan Out (FOUT)
An interesting property of FOUT is that it is a significantly
better predictor of the dLOCC metric than of the dNOTC
metric (at the 95% confidence level for DocGen, 99% for
Ant). The fan out of a class measures the number of other
class es that the class depends on. In the actual program,
(objects of) these classes will have been initialized before
they are used. In other words, the fields of the classes will
have been set to the appropriate values before they are used.
When a class needs to be (unit) tested, however, the tester
will need to take care of the initialization of the (objects of)
other classes and the class-under-test itself. The amount of
initialization required before testing can be done will thus
influence the testing effort, and by assumption, the dLOCC
metric. By this argument, the FOUT metric measures a test
case construction factor.

Response For Class (RFC)
From the definition in Section 4, it is clear that the RFC met-
ric consists of two components. First, the number of meth-
ods of class c. The strong correlation between the RFC and
NOM metrics for both systems is explained by this compo-
nent. Second, the number of methods of other classes that
are potentially invoked by the methods of c. The invocation
of methods of other classes gives rise to fan out, hence the
strong correlation between RFC and FOUT in both systems.
Given the correlations between the RFC metric and both the

NOM and FOUT metrics, the observed correlations between
the RFC and dLOCC metrics for both DocGen and Ant are
as expected.

5.5.4. Class Quality Metrics

The last metric to discuss is the Lack of Cohesion of Methods
(LCOM). This metric is interesting, in the sense that it is
signficantly correlated with test suite metrics for Ant, but not
for DocGen.

To understand why this is the case, observe that Table 2
shows that for both systems the LCOM and NOF metrics are
moderately correlated. In case of DocGen, the correlation
is even fairly strong. Thus, it seems that for our case stud-
ies, classes that are not cohesive (high LCOM value) tend to
have a high number of fields, and similarly, classes that are
cohesive tend to have a low number of fields. Similar cor-
relations exist between the LCOM and NOM metrics. Thus,
incohesive classes tend to have a high number of fields and
methods, and cohesive classes tend to have a low number of
fields and methods. These effects are intuitively sound: it is
harder to create a large cohesive class than it is to create a
small one.

6. Concluding Remarks

The purpose of this paper is to increase our understanding
of what makes code hard to test. To that end, we analyzed
relations between classes and their JUnit test cases in two
Java systems totalling over 250,000 lines of code. We were
able to demonstrate a significant correlation between class
level metrics (most notably FOUT, LOCC, and RFC) and test
level metrics (dLOCC and dNOTC). Moreover we discussed
in detail how various metrics can contribute to testability, us-
ing an open source and a commercial Java system as example
systems.

Our approach is based on an extensive survey of the lit-
erature on software testability. During our survey, we were
not able to find other papers analyzing relationships between
source code and test data. We conducted our experiments
using the GQM/MEDEA framework, and we evaluated our
results using Spearman’s rank-order correlation coefficient.
Finally, we offered a discussion of factors that can explain
our findings.

We consider our results a necessary and valuable first step
for understanding what makes code harder to test. We fore-
see the following extensions of our work.

First, our experimental basis should be extended. Al-
though the systems studied were large, containing many
〈class, testclass〉 pairs, it is desirable to extend our findings to
a larger number of systems, developed by all sorts of teams
using different development methodologies. We are in the

9

process of making our toolset available so that others can re-
peat our experiments on their own systems.

Second, we see opportunities for enriching the underlying
testability model. At present we focus on unit level 〈class,
testclass〉 pairs. It would be interesting to see how package
level unit testing would fit in, or perhaps package level func-
tional testing. As an example, the latter approach is used in
the Eclipse implementation, in which JUnit is used to imple-
ment (package level) functional tests.

Another possibility is the use of more powerful statis-
tics than Spearman’s rank-order correlation in order to fur-
ther assess the predictive capabilities of the metrics. Re-
cent work by Wheeldon and Counsell[22] shows that many
object-oriented coupling metrics obey power law distribu-
tions. Since metrics like FOUT and RFC are related to
coupling metrics, they may be distributed similarly. Con-
sequently, more powerful statistics could possibly be used to
assess them.

Last but not least, the metrics we propose can be incor-
porated in an IDE such as Eclipse, offering help to both the
tester and the developer. Currently Eclipse is well-integrated
with JUnit, offering, for example, a button to generate a JU-
nit xxTest class body for a given class xx. Our metrics can
be used to support the test process, not only in order to iden-
tify classes that are hard to test, but also to signal 〈class,
testclass〉 pairs that deviate from normal findings (or from
metrics results obtained from a system that is considered
thoroughly tested) allowing a tool to issue testability-related
warnings.

Acknowledgments Thanks to Tobias Kuipers from the Soft-
ware Improvement Group for his support throughout the
project. Thanks to Adam Booij for his help with the calcu-
lation of the statistics, and his help with statistics in general.
We thank Tom Tourwé, Tijs van der Storm, Jurgen Vinju and
Vania Marangozova for commenting on drafts of this paper.
Partial support was received from ITEA (Delft University of
Technology, project MOOSE, ITEA 01002).

References

[1] B. Baudry, Y. Le Traon, and G. Sunyé. Testability analysis
of a UML class diagram. In Proceedings of the Ninth Inter-
national Software Metrics Symposium (METRICS03), pages
54–66. IEEE Computer Society, 2003.

[2] K. Beck. eXtreme Programming eXplained. Addison-Wesley,
Reading, Massachusetts, 1999.

[3] K. Beck and E. Gamma. Test infected: Programmers love
writing tests. Java Report, 3(7):51–56, 1998.

[4] R. Binder. Design for testability in object-oriented systems.
Comm. of the ACM, 37(9):87–101, 1994.

[5] R. Binder. Testing Object-Oriented Systems: Models, Pat-
terns, and Tools. Addison-Wesley, 2000.

[6] B.W. Boehm. Software Engineering Economics. Prentice
Hall, Englewood Cliffs, NJ, 1981.

[7] L. C. Briand, J. W. Daly, and J. K. Wüst. A unified framework
for coupling measurement in object-oriented systems. IEEE
Tr. on Software Engineering, 25(1):91–121, 1999.

[8] L. C. Briand, S. Morasca, and V. Basili. An operational pro-
cess for goal-driven definition of measures. IEEE Transac-
tions on Software Engineering, 28(12):1106–1125, December
2002.

[9] S. Chidamber and C. Kemerer. A metrics suite for object
oriented design. IEEE Transactions on Software Engineering,
20(6):476–493, June 1994.

[10] A. van Deursen and T. Kuipers. Building documentation gen-
erators. In Proceedings of the International Conference on
Software Maintenance (ICSM’99), pages 40–49. IEEE Com-
puter Society, 1999.

[11] R. Freedman. Testability of software components. IEEE
Transactions on Software Engineering, 17(6):553–564, June
1991.

[12] B. Henderson-Sellers. Object-Oriented Metrics. Prentice
Hall, New Jersey, 1996.

[13] ISO. International standard ISO/IEC 9126. information tech-
nology: Software product evaluation: Quality characteristics
and guidelines for their use, 1991.

[14] S. Jungmayr. Identifying test-critical dependencies. In Pro-
ceedings of the International Conference on Software Main-
tenance, pages 404–413. IEEE Computer Society, October
2002.

[15] J. McGregor and S. Srinivas. A measure of testing effort. In
Proceedings of the Conference on Object-Oriented Technolo-
gies, pages 129–142. USENIX Association, June 1996.

[16] L.H. Putnam. A general empirical solution to the macrosoft-
ware sizing and estimating problem. IEEE Tr. on Software
Engineering, 4(4):345–61, 1978.

[17] A. Rountev, A. Milanova, and B. G. Ryder. Fragment class
analysis for testing of polymorphism in java software. In
Proceedings of the 25th International Conference on Software
Engineering (ICSE’03). IEEE Computer Society, 2003.

[18] S. Siegel and N. J. Castellan Jr. Nonparametric statistics for
the behavioral sciences. McGraw-Hill Book Company, New
York, 1988.

[19] J. Voas. PIE: A dynamic failure-based technique. IEEE
Transactions on Software Engineering, 18(8):717–727, Au-
gust 1992.

[20] J. Voas and K. Miller. Semantic metrics for software testa-
bility. Journal of Systems and Software, 20:207–216, March
1993.

[21] A. Watson and T. McCabe. Structured testing: A software
testing methodology using the cyclomatic complexity metric.
T. NIST Special Publication 500-235, National Institute of
Standards and Technology, Washington, D.C., 1996.

[22] R. Wheeldon and S. Counsell. Power law distributions in class
relationships. In Proceedings of the Third International Work-
shop on Source Code Analysis and Manipulation. IEEE Com-
puter Society, September 2003.

10

